Saturday, 18 November 2017

Med Bevegelig Gjennomsnitt Modell Stasjonær


Flytte gjennomsnitts - og eksponensielle utjevningsmodeller Som et første skritt i å bevege seg ut over gjennomsnittlige modeller, kan tilfeldige gangmodeller og lineære trendmodeller, ikke-sone-mønstre og trender ekstrapoleres ved hjelp av en flytende gjennomsnitt eller utglattningsmodell. Den grunnleggende forutsetningen bak gjennomsnittlige og utjevningsmodeller er at tidsserien er lokalt stasjonær med et sakte varierende middel. Derfor tar vi et flytende (lokalt) gjennomsnitt for å anslå dagens verdi av gjennomsnittet, og deretter bruke det som prognosen for nær fremtid. Dette kan betraktes som et kompromiss mellom den gjennomsnittlige modellen og den tilfeldige-walk-uten-drift-modellen. Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend. Et glidende gjennomsnitt kalles ofte en quotsmoothedquot-versjon av den opprinnelige serien, fordi kortsiktig gjennomsnittsverdi medfører utjevning av støtene i den opprinnelige serien. Ved å justere graden av utjevning (bredden på det bevegelige gjennomsnittet), kan vi håpe å finne en slags optimal balanse mellom ytelsen til de gjennomsnittlige og tilfeldige turmodellene. Den enkleste typen gjennomsnittlig modell er. Enkel (likevektet) Flytende gjennomsnitt: Værvarselet for verdien av Y på tidspunktet t1 som er laget på tidspunktet t, er det enkle gjennomsnittet av de nyeste m-observasjonene: (Her og andre steder vil jeg bruke symbolet 8220Y-hat8221 til å stå for en prognose av tidsserien Y som ble gjort så tidlig som mulig ved en gitt modell.) Dette gjennomsnittet er sentrert ved period-t (m1) 2, noe som innebærer at estimatet av det lokale middel vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. (m1) 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er (m1) 2 i forhold til perioden for prognosen beregnes. Dette er hvor lang tid det vil være å prognostisere prognoser bak vendepunkter i dataene . For eksempel, hvis du er i gjennomsnitt de siste 5 verdiene, vil prognosene være omtrent 3 perioder sent i å svare på vendepunkter. Merk at hvis m1, den enkle glidende gjennomsnittlige (SMA) modellen er lik den tilfeldige turmodellen (uten vekst). Hvis m er veldig stor (sammenlignbar med lengden på estimeringsperioden), svarer SMA-modellen til den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av k for å oppnå den beste kvote kvoten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først kan vi prøve å passe den med en tilfeldig walk-modell, noe som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt: Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men i så måte velger den mye av kvotenivået i data (tilfeldige svingninger) samt quotsignalquot (det lokale gjennomsnittet). Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 termer, får vi et smidigere sett med prognoser: Det 5-tiden enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet. Gjennomsnittsalderen for dataene i denne prognosen er 3 ((51) 2), slik at den har en tendens til å ligge bak vendepunktene med tre perioder. (For eksempel ser det ut til at en nedtur har skjedd i perioden 21, men prognosene vender seg ikke til flere perioder senere.) Legg merke til at de langsiktige prognosene fra SMA-modellen er en horisontal rettlinje, akkurat som i tilfeldig gang modell. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, er prognosene fra SMA-modellen lik et veid gjennomsnitt av de siste verdiene. De konfidensgrenser som beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større da prognoseperioden øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvide seg for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisontprognoser. For eksempel kan du sette opp et regneark der SMA-modellen skulle brukes til å prognose 2 trinn foran, 3 trinn fremover, etc. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene i hver prognosehorisont, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av riktig standardavvik. Hvis vi prøver et 9-sikt enkelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en bremseeffekt: Gjennomsnittsalderen er nå 5 perioder (91) 2). Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10: Legg merke til at prognosene nå faller bakom vendepunkter med ca 10 perioder. Hvilken mengde utjevning er best for denne serien Her er et bord som sammenligner feilstatistikken sin, også et gjennomsnitt på tre sikt: Modell C, 5-års glidende gjennomsnitt, gir den laveste verdien av RMSE med en liten margin over 3 term og 9-sikt gjennomsnitt, og deres andre statistikker er nesten identiske. Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. (Tilbake til toppen av siden.) Browns Simple Exponential Smoothing (eksponentielt vektet glidende gjennomsnitt) Den enkle glidende gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en mer gradvis måte - for eksempel bør den siste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning (SES) - modellen oppnår dette. La 945 betegne en quotsmoothing constantquot (et tall mellom 0 og 1). En måte å skrive modellen på er å definere en serie L som representerer dagens nivå (dvs. lokal middelverdi) av serien som estimert fra data til nå. Verdien av L ved tid t beregnes rekursivt fra sin egen tidligere verdi slik: Således er den nåværende glattede verdien en interpolering mellom den forrige glattede verdien og den nåværende observasjonen, hvor 945 styrer nærheten til den interpolerte verdien til den nyeste observasjon. Forventningen for neste periode er bare den nåværende glatte verdien: Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av de tilsvarende versjoner. I den første versjonen er prognosen en interpolasjon mellom forrige prognose og tidligere observasjon: I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel av 945. Er feilen gjort ved tid t. I den tredje versjonen er prognosen et eksponentielt vektet (dvs. nedsatt) glidende gjennomsnitt med rabattfaktor 1-945: Interpolasjonsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark: det passer inn i en enkeltcelle og inneholder cellehenvisninger som peker på forrige prognose, forrige observasjon og cellen der verdien av 945 er lagret. Merk at hvis 945 1 er SES-modellen tilsvarer en tilfeldig turmodell (uten vekst). Hvis 945 0 er SES-modellen ekvivalent med den gjennomsnittlige modellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet. (Gå tilbake til toppen av siden.) Gjennomsnittsalderen for dataene i prognosen for enkel eksponensiell utjevning er 1 945 i forhold til perioden for prognosen beregnes. (Dette skal ikke være åpenbart, men det kan lett bli vist ved å evaluere en uendelig serie.) Derfor har den enkle, glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunkter med rundt 1 945 perioder. For eksempel, når 945 0,5 lag er 2 perioder når 945 0.2 lag er 5 perioder når 945 0,1 lag er 10 perioder, og så videre. For en gitt gjennomsnittlig alder (det vil si mengden lag), er prognosen for enkel eksponensiell utjevning (SES) noe bedre enn SMA-prognosen (Simple Moving Average) fordi den legger relativt mer vekt på den siste observasjonen - dvs. det er litt mer quotresponsivequot for endringer som oppstod i den siste tiden. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 945 0,2 begge en gjennomsnittlig alder på 5 for dataene i prognosene, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen og ved Samtidig er det ikke 8220forget8221 om verdier som er mer enn 9 år gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den lett kan optimaliseres ved å bruke en quotsolverquot-algoritme for å minimere den gjennomsnittlige kvadratfeilen. Den optimale verdien av 945 i SES-modellen for denne serien viser seg å være 0,2961, som vist her: Gjennomsnittsalderen for dataene i denne prognosen er 10,2961 3,4 perioder, noe som ligner på et 6-sikt enkelt glidende gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rett linje. som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervallene for den tilfeldige turmodellen. SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er faktisk et spesielt tilfelle av en ARIMA-modell. slik at den statistiske teorien om ARIMA-modeller gir et solid grunnlag for beregning av konfidensintervall for SES-modellen. Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA (1) og ikke en konstant periode. ellers kjent som en quotARIMA (0,1,1) modell uten constantquot. MA (1) - koeffisienten i ARIMA-modellen tilsvarer mengden 1-945 i SES-modellen. For eksempel, hvis du passer på en ARIMA (0,1,1) modell uten konstant til serien analysert her, viser den estimerte MA (1) - koeffisienten seg å være 0,7029, som er nesten nøyaktig en minus 0,2961. Det er mulig å legge til antagelsen om en konstant lineær trend uten null som en SES-modell. For å gjøre dette oppgir du bare en ARIMA-modell med en ikke-sesongforskjell og en MA (1) - sikt med en konstant, dvs. en ARIMA-modell (0,1,1) med konstant. De langsiktige prognosene vil da ha en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant langsiktig eksponensiell trend for en enkel eksponensiell utjevningsmodell (med eller uten sesongjustering) ved å bruke inflasjonsjusteringsalternativet i prognoseprosedyren. Den aktuelle kvoteringskvoten (prosentvekst) per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i forbindelse med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter . (Tilbake til toppen av siden.) Browns Lineær (dvs. dobbel) Eksponensiell utjevning SMA-modellene og SES-modellene antar at det ikke er noen trend av noe slag i dataene (som vanligvis er OK eller i det minste ikke altfor dårlig for 1- trinnvise prognoser når dataene er relativt støyende), og de kan modifiseres for å inkorporere en konstant lineær trend som vist ovenfor. Hva med kortsiktige trender Hvis en serie viser en varierende vekstnivå eller et syklisk mønster som skiller seg tydelig ut mot støyen, og hvis det er behov for å prognose mer enn 1 periode framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning (LES) modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trendmodellen er Browns lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. (En mer sofistikert versjon av denne modellen, Holt8217s, blir diskutert nedenfor.) Den algebraiske form av Brown8217s lineær eksponensiell utjevningsmodell, som den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men liknende former. Denne standardmodellen er vanligvis uttrykt som følger: La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y. Dvs. verdien av S ved period t er gitt av: (Husk at, under enkle eksponensiell utjevning, dette ville være prognosen for Y ved periode t1.) Lad deretter Squot betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning (ved hjelp av samme 945) til serie S: Endelig prognosen for Y tk. for noe kgt1, er gitt av: Dette gir e 1 0 (det vil si lure litt, og la den første prognosen være den samme første observasjonen) og e 2 Y 2 8211 Y 1. hvoretter prognosene genereres ved å bruke ligningen ovenfor. Dette gir de samme monterte verdiene som formelen basert på S og S dersom sistnevnte ble startet med S 1 S 1 Y 1. Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Holt8217s Lineær eksponensiell utjevning Brown8217s LES-modell beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som den kan passe: nivået og trenden er ikke tillatt å variere til uavhengige priser. Holt8217s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. Til enhver tid t, som i Brown8217s modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden. Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er L t82091 og T t-1. henholdsvis, da var prognosen for Y tshy som ville vært gjort på tidspunktet t-1, lik L t-1 T t-1. Når den faktiske verdien er observert, beregnes det oppdaterte estimatet av nivået rekursivt ved å interpolere mellom Y tshy og dens prognose, L t-1 T t 1, med vekt på 945 og 1- 945. Forandringen i estimert nivå, nemlig L t 8209 L t82091. kan tolkes som en støyende måling av trenden på tidspunktet t. Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t 8209 L t82091 og det forrige estimatet av trenden, T t-1. ved bruk av vekter av 946 og 1-946: Fortolkningen av trend-utjevningskonstanten 946 er analog med den for nivåutjevningskonstanten 945. Modeller med små verdier på 946 antar at trenden bare endrer seg veldig sakte over tid, mens modeller med større 946 antar at det endrer seg raskere. En modell med en stor 946 mener at den fjerne fremtiden er veldig usikker, fordi feil i trendberegning blir ganske viktig når det regnes med mer enn en periode framover. (Tilbake til toppen av siden.) Utjevningskonstantene 945 og 946 kan estimeres på vanlig måte ved å minimere gjennomsnittlig kvadratfeil i de 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 945 0.3048 og 946 0.008. Den svært små verdien av 946 betyr at modellen tar svært liten endring i trenden fra en periode til den neste, så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til å estimere det lokale nivået i serien, er gjennomsnittsalderen for dataene som brukes til estimering av lokal trenden, proporsjonal med 1 946, men ikke akkurat lik den . I dette tilfellet viser det seg å være 10 006 125. Dette er et svært nøyaktig tall, forutsatt at nøyaktigheten av estimatet av 946 er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er i gjennomsnitt over ganske mye historie i estimering av trenden. Prognoseplanet nedenfor viser at LES-modellen anslår en litt større lokal trend i slutten av serien enn den konstante trenden som er estimert i SEStrend-modellen. Også den estimerte verdien på 945 er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend, så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du 8220eyeball8221 ser dette, ser det ut som om den lokale trenden har vendt nedover på slutten av serien. Hva har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadriske feilen på 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden gjør ikke en stor forskjell. Hvis alt du ser på er 1-trinns feil, ser du ikke det større bildet av trender over (si) 10 eller 20 perioder. For å få denne modellen mer i tråd med øyehals ekstrapoleringen av dataene, kan vi manuelt justere trendutjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. Hvis vi for eksempel velger å sette 946 0,1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så. Here8217s hva prognosen tomten ser ut hvis vi setter 946 0,1 mens du holder 945 0.3. Dette ser intuitivt fornuftig ut på denne serien, selv om det er sannsynlig farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken Her er en modell sammenligning for de to modellene vist ovenfor, samt tre SES-modeller. Den optimale verdien av 945. For SES-modellen er ca. 0,3, men tilsvarende resultater (med henholdsvis litt mer responstid) oppnås med 0,5 og 0,2. (A) Holts lineær eksp. utjevning med alfa 0,3048 og beta 0,008 (B) Holts lineær eksp. utjevning med alfa 0,3 og beta 0,1 (C) Enkel eksponensiell utjevning med alfa 0,5 (D) Enkel eksponensiell utjevning med alfa 0,3 (E) Enkel eksponensiell utjevning med alfa 0,2 Deres statistikk er nesten identisk, slik at vi virkelig kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag på hva som har skjedd i løpet av de siste 20 perioder eller så, kan vi gjøre en sak for LES-modellen med 945 0.3 og 946 0.1. Hvis vi ønsker å være agnostiker om det er en lokal trend, kan en av SES-modellene være lettere å forklare og vil også gi mer mid-of-the-road prognoser for de neste 5 eller 10 periodene. (Tilbake til toppen av siden.) Hvilken type trend-ekstrapolering er best: Horisontal eller lineær Empirisk bevis tyder på at hvis dataene allerede er justert (om nødvendig) for inflasjon, kan det være uhensiktsmessig å ekstrapolere kortsiktig lineær trender veldig langt inn i fremtiden. Trender som tyder på i dag, kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Av denne grunn utfører enkle eksponensielle utjevning ofte bedre ut av prøven enn det ellers kunne forventes, til tross for sin kvadratiske kvadratiske horisontal trend-ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i sine trendprognoser. Den demonstrede LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA-modell (1,1,2). Det er mulig å beregne konfidensintervall rundt langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller. (Pass på: ikke alle programmer beregner konfidensintervaller for disse modellene riktig.) Bredden på konfidensintervaller avhenger av (i) RMS-feilen i modellen, (ii) type utjevning (enkel eller lineær) (iii) verdien (e) av utjevningskonstanten (e) og (iv) antall perioder fremover du forutsetter. Generelt sprer intervallene raskere da 945 blir større i SES-modellen, og de sprer seg mye raskere når lineær snarere enn enkel utjevning brukes. Dette emnet blir diskutert videre i ARIMA-modellene i notatene. (Tilbake til toppen av siden.) 2.1 Flytte gjennomsnittlige modeller (MA modeller) Tidsseriemodeller kjent som ARIMA-modeller kan inneholde autoregressive vilkår og eller flytte gjennomsnittlige vilkår. I uke 1 lærte vi et autoregressivt uttrykk i en tidsseriemodell for variabelen x t er en forsinket verdi på x t. For eksempel er et lag 1 autoregressivt uttrykk x t-1 (multiplisert med en koeffisient). Denne leksjonen definerer glidende gjennomsnittlige vilkår. En glidende gjennomsnittlig term i en tidsseriemodell er en tidligere feil (multiplisert med en koeffisient). La (wt overset N (0, sigma2w)), noe som betyr at w t er identisk, uavhengig distribuert, hver med en normalfordeling med gjennomsnittlig 0 og samme varians. Den første ordre-flytende gjennomsnittsmodellen, betegnet med MA (1), er (xt mu wt theta1w) Den andre ordens bevegelige gjennomsnittsmodellen, betegnet med MA (2), er (xt mu wt theta1w theta2w) , betegnet med MA (q) er (xt mu wt theta1w theta2w punkter thetaqw) Merknad. Mange lærebøker og programvare definerer modellen med negative tegn før betingelsene. Dette endrer ikke de generelle teoretiske egenskapene til modellen, selv om den ikke flipper de algebraiske tegnene på estimerte koeffisientverdier og (unsquared) termer i formler for ACFer og avvik. Du må sjekke programvaren for å verifisere om negative eller positive tegn har blitt brukt for å skrive riktig estimert modell. R bruker positive tegn i sin underliggende modell, som vi gjør her. Teoretiske egenskaper av en tidsrekkefølge med en MA (1) modell Merk at den eneste ikke-nullverdien i teoretisk ACF er for lag 1. Alle andre autokorrelasjoner er 0. Således er en prøve-ACF med en signifikant autokorrelasjon bare ved lag 1 en indikator på en mulig MA (1) modell. For interesserte studenter er bevis på disse egenskapene et vedlegg til denne utdelingen. Eksempel 1 Anta at en MA (1) modell er x t10 w t .7 w t-1. hvor (wt overset N (0,1)). Dermed er koeffisienten 1 0,7. Den teoretiske ACF er gitt av Et plott av denne ACF følger. Plottet som nettopp er vist er den teoretiske ACF for en MA (1) med 1 0,7. I praksis vil en prøve vanligvis ikke gi et slikt klart mønster. Ved hjelp av R simulerte vi n 100 prøveverdier ved hjelp av modellen x t 10 w t .7 w t-1 hvor w t iid N (0,1). For denne simuleringen følger en tidsserie-plott av prøvedataene. Vi kan ikke fortelle mye fra denne plottet. Prøven ACF for de simulerte dataene følger. Vi ser en spike i lag 1 etterfulgt av generelt ikke signifikante verdier for lags forbi 1. Merk at prøven ACF ikke samsvarer med det teoretiske mønsteret til den underliggende MA (1), som er at alle autokorrelasjoner for lags forbi 1 vil være 0 . En annen prøve ville ha en litt annen prøve-ACF vist nedenfor, men vil trolig ha de samme brede funksjonene. Terapeutiske egenskaper av en tidsserie med en MA (2) modell For MA (2) modellen er teoretiske egenskaper følgende: Merk at de eneste ikke-nullverdiene i teoretisk ACF er for lags 1 og 2. Autokorrelasjoner for høyere lags er 0 . En ACF med signifikant autokorrelasjoner på lags 1 og 2, men ikke-signifikante autokorrelasjoner for høyere lags indikerer en mulig MA (2) modell. iid N (0,1). Koeffisientene er 1 0,5 og 2 0,3. Fordi dette er en MA (2), vil den teoretiske ACF bare ha null nullverdier ved lags 1 og 2. Verdier av de to ikke-null-autokorrelasjonene er Et plot av teoretisk ACF følger. Som nesten alltid er tilfellet, vil prøvedataene ikke oppføre seg så perfekt som teori. Vi simulerte n 150 utvalgsverdier for modellen x t 10 w t .5 w t-1 .3 w t-2. hvor det er N (0,1). Tidsserien av dataene følger. Som med tidsserien for MA (1) eksempeldata, kan du ikke fortelle mye om det. Prøven ACF for de simulerte dataene følger. Mønsteret er typisk for situasjoner der en MA (2) modell kan være nyttig. Det er to statistisk signifikante pigger på lags 1 og 2 etterfulgt av ikke-signifikante verdier for andre lags. Merk at på grunn av prøvetakingsfeil, samsvarte ACF ikke nøyaktig det teoretiske mønsteret. ACF for General MA (q) Modeller En egenskap av MA (q) - modeller generelt er at det finnes ikke-null autokorrelasjoner for de første q lagene og autokorrelasjonene 0 for alle lagene gt q. Ikke-entydighet av sammenhengen mellom verdier av 1 og (rho1) i MA (1) Modell. I MA (1) - modellen, for en verdi på 1. Den gjensidige 1 1 gir samme verdi. For eksempel, bruk 0,5 for 1. og bruk deretter 1 (0,5) 2 for 1. Du får (rho1) 0,4 i begge tilfeller. For å tilfredsstille en teoretisk begrensning kalt invertibility. vi begrenser MA (1) - modeller for å ha verdier med absolutt verdi mindre enn 1. I eksemplet som er gitt, vil 1 0,5 være en tillatelig parameterverdi, mens 1 10,5 2 ikke vil. Invertibility av MA modeller En MA-modell sies å være invertibel hvis den er algebraisk tilsvarer en konvergerende uendelig rekkefølge AR-modell. Ved konvergering mener vi at AR-koeffisientene reduseres til 0 da vi beveger oss tilbake i tid. Invertibility er en begrensning programmert i tidsserier programvare som brukes til å estimere koeffisientene av modeller med MA termer. Det er ikke noe vi ser etter i dataanalysen. Ytterligere opplysninger om inverterbarhetsbegrensningen for MA (1) - modeller er gitt i vedlegget. Avansert teorienotat. For en MA (q) modell med en spesifisert ACF, er det bare en inverterbar modell. Den nødvendige betingelsen for invertibilitet er at koeffisientene har verdier slik at ligningen 1- 1 y-. - q y q 0 har løsninger for y som faller utenfor enhetens sirkel. R-kode for eksemplene I eksempel 1, plotte vi den teoretiske ACF av modellen x t10 w t. 7w t-1. og deretter simulert n 150 verdier fra denne modellen og plottet prøve tidsseriene og prøven ACF for de simulerte dataene. R-kommandoene som ble brukt til å plotte den teoretiske ACF var: acfma1ARMAacf (mac (0,7), lag. max10) 10 lag av ACF for MA (1) med theta1 0,7 lags0: 10 skaper en variabel som heter lags som varierer fra 0 til 10. plot (lags, acfma1, xlimc (1,10), ylabr, typh, main ACF for MA (1) med theta1 0,7) abline (h0) legger til en horisontal akse på plottet. Den første kommandoen bestemmer ACF og lagrer den i en gjenstand kalt acfma1 (vårt valg av navn). Plot-kommandoen (den tredje kommandoen) plots lags versus ACF-verdiene for lags 1 til 10. ylab-parameteren merker y-aksen og hovedparameteren setter en tittel på plottet. For å se de numeriske verdiene til ACF, bruk bare kommandoen acfma1. Simuleringen og tomtene ble gjort med følgende kommandoer. xcarima. sim (n150, liste (mac (0.7))) Simulerer n 150 verdier fra MA (1) xxc10 legger til 10 for å gjøre gjennomsnitt 10. Simuleringsstandarder betyr 0. Plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF for simulerte prøvedata) I eksempel 2 skisserte vi den teoretiske ACF av modellen xt 10 wt .5 w t-1 .3 w t-2. og deretter simulert n 150 verdier fra denne modellen og plottet prøve tidsseriene og prøven ACF for de simulerte dataene. R-kommandoene som ble brukt var acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typh, hoved ACF for MA (2) med theta1 0,5, theta20.3) abline (h0) xcarima. sim (n150, liste (mac (0,5, 0,3)) xxc10 plot (x, typeb, hoved Simulert MA (2) Serie) acf (x, xlimc (1,10) mainACF for simulert MA (2) Data) Vedlegg: Bevis på egenskaper av MA (1) For interesserte studenter, her er bevis for teoretiske egenskaper av MA (1) modellen. Varians: (tekst (xt) tekst (mu wt theta1 w) 0 tekst (wt) tekst (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Når h 1, er det forrige uttrykket 1 w 2. For ethvert h 2, . Årsaken er at ved definisjon av uavhengighet av wt. E (w k w j) 0 for noen k j. Videre, fordi w t har middelverdien 0, E (w jw j) E (w j 2) w 2. For en tidsserie, Bruk dette resultatet for å få ACF gitt ovenfor. En inverterbar MA-modell er en som kan skrives som en uendelig rekkefølge AR-modell som konvergerer slik at AR-koeffisientene konvergerer til 0 mens vi beveger oss uendelig tilbake i tiden. Vel demonstrere invertibility for MA (1) modellen. Vi erstatter deretter forholdet (2) for w t-1 i ligning (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-tet2w) Ved tid t-2. (2) blir vi da erstatter forholdet (4) for w t-2 i ligning (3) (zt wt theta1z-teteta21wt theta1z-teteta21 (z-theta1w) wt theta1z-theta12z theta31w) Hvis vi skulle fortsette uendelig), ville vi få den uendelige rekkefølgen AR-modellen (zt wt theta1z - theta21z theta31z - theta41z prikker) Merk imidlertid at hvis 1 1, vil koeffisientene som multipliserer lagene av z, øke (uendelig) i størrelse når vi beveger oss tilbake i tid. For å forhindre dette, trenger vi 1 lt1. Dette er betingelsen for en inverterbar MA (1) modell. Uendelig Order MA-modell I uke 3 ser du at en AR (1) - modell kan konverteres til en uendelig rekkefølge MA-modell: (xt - mu wt phi1w phi21w prikker phik1 w dots sum phij1w) Denne summeringen av tidligere hvite støybetingelser er kjent som årsakssammenheng av en AR (1). Med andre ord, x t er en spesiell type MA med et uendelig antall vilkår som går tilbake i tid. Dette kalles en uendelig ordre MA eller MA (). En endelig ordre MA er en uendelig orden AR og en hvilken som helst endelig rekkefølge AR er en uendelig rekkefølge MA. Tilbakekall i uke 1, bemerket vi at et krav til en stasjonær AR (1) er at 1 lt1. Lar beregne Var (x t) ved hjelp av årsakssammensetningen. Dette siste trinnet bruker et grunnfakta om geometrisk serie som krever (phi1lt1) ellers ser serien ut. Navigasjon8.4 Flytte gjennomsnittlige modeller I stedet for å bruke tidligere verdier av prognosevariabelen i en regresjon, bruker en bevegelig gjennomsnittsmodell tidligere prognosefeil i en regresjonslignende modell. y c et theta e theta e dots theta e, hvor et er hvit støy. Vi refererer til dette som en MA (q) modell. Selvfølgelig observerer vi ikke verdiene til et, så det er ikke egentlig regresjon i vanlig forstand. Legg merke til at hver verdi av yt kan betraktes som et vektet glidende gjennomsnitt av de siste prognosefeilene. Imidlertid bør bevegelige gjennomsnittlige modeller ikke forveksles med flytende gjennomsnittsutjevning som vi diskuterte i kapittel 6. En glidende gjennomsnittsmodell brukes til å prognostisere fremtidige verdier mens flytende gjennomsnittsutjevning brukes til å estimere utviklingscyklusen til tidligere verdier. Figur 8.6: To eksempler på data fra bevegelige gjennomsnittsmodeller med forskjellige parametere. Venstre: MA (1) med y t 20e t 0.8e t-1. Høyre: MA (2) med y t e t-e t-1 0.8e t-2. I begge tilfeller er e t normalt distribuert hvit støy med gjennomsnittlig null og varians en. Figur 8.6 viser noen data fra en MA (1) modell og en MA (2) modell. Endring av parametrene theta1, prikker, thetaq resulterer i forskjellige tidsseriemønstre. Som med autoregressive modeller, vil variansen av feilbegrepet et bare endre omfanget av serien, ikke mønstrene. Det er mulig å skrive en stasjonær AR (p) modell som en MA (infty) modell. For eksempel ved bruk av gjentatt substitusjon, kan vi demonstrere dette for en AR (1) - modell: begynnelse og forsterkning og forsterkning (phi1y e) og forsterkning av phi1 og et phi13y phi12e phi1e og amplitud ende Forutsatt -1 lt phi1 lt 1, verdien av phi1k blir mindre etter hvert som k blir større. Så til slutt får vi yt og phi1 phi12 e phi13 e cdots, en MA (infty) prosess. Det motsatte resultatet holder seg dersom vi legger inn noen begrensninger på MA parametrene. Så kalles MA-modellen inverterbar. Det vil si at vi kan skrive en omvendt MA (q) prosess som en AR (infty) prosess. Invertible modeller er ikke bare å gjøre det mulig for oss å konvertere fra MA-modeller til AR-modeller. De har også noen matematiske egenskaper som gjør dem enklere å bruke i praksis. Invertibilitetsbegrensningene ligner stasjonære begrensninger. For en MA (1) modell: -1lttheta1lt1. For en MA (2) modell: -1lttheta2lt1, theta2theta1 gt-1, theta1-teteta1 1. Mer kompliserte forhold holder for qge3. Igjen vil R ta vare på disse begrensningene når vi estimerer modellene.

No comments:

Post a Comment